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Abstract. Voice Timbre Attribute Detection (vTAD) plays a pivotal role in fine-grained timbre
modeling for speech generation tasks. However, it remains challenging due to the inherently sub-
jective nature of timbre descriptors and the severe label imbalance in existing datasets. In this
work, we present QvTAD, a novel pairwise comparison framework based on differential attention,
designed to enhance the modeling of perceptual timbre attributes. To address the label imbalance
in the VCTK-RVA dataset, we introduce a graph-based data augmentation strategy that con-
structs a directed acyclic graph and employs disjoint-set union techniques to automatically mine
unobserved utterance pairs with valid attribute comparisons. Our framework leverages speaker
embeddings from a pretrained FACodec, and incorporates a Relative Timbre Shift-Aware Dif-
ferential Attention module. This module explicitly models attribute-specific contrasts between
paired utterances via differential denoising and contrast amplification mechanisms. Experimen-
tal results on the VCTK-RVA benchmark demonstrate that QvTAD achieves substantial im-
provements across multiple timbre descriptors, with particularly notable gains in cross-speaker
generalization scenarios.

Keywords: Voice Timbre Attribute Detection · Speech Perception · Differential Relative At-
tribute Learning.

1 Introduction

Timbre attribute modeling is critical for advancing speech generative technologies. As a core ele-
ment of conversation, a speaker’s timbre conveys both identity-related characteristics and unique vocal
style—shaped by vocal tract anatomy, age, emotion, and environment. These variations shape audi-
tory perception and generate diverse expressive impressions. For generative tasks like speech synthesis,
developing highly expressive, finely controllable multi-speaker systems requires multi-dimensional ob-
jective modeling of synthesized timbre attributes. However, modeling timbre variations across styles
remains challenging due to the subjective and abstract nature of timbre descriptions.

Some speech generation algorithms, such as Text-to-Speech (TTS) and Voice Conversion (VC),
have seen studies conduct in-depth exploration into the description and extraction of speakers’ timbre
features. Seed-VC [8] enhances timbre representation using a diffusion-based Transformer architec-
ture, while introducing training-time perturbations to mitigate timbre leakage, thereby achieving more
accurate voice conversion. In the TTS domain, NaturalSpeech3 [7] proposed a codec-based speech rep-
resentation that decomposes waveform signals into prosody, linguistic content, acoustic details, and
timbre of speaker. This disentangled representation improves the naturalness and fidelity of reference
speaker synthesis. Meanwhile, controllable TTS via instruction-based conditioning has gained increas-
ing attention, enabling control over emotion, speed, and energy through natural language prompts, as
demonstrated by [5][16][17]. Despite these advances, fine-grained modeling of timbre remains highly
challenging, and tasks such as precise timbre analysis and controllable timbre generation are still in
their early stages of exploration [1][11].

To enable timbre-aware editing and comparison, several recent studies have attempted to capture
and manipulate differences in speaker timbre attributes. For example, VoxEditor [10] introduces a
manually annotated dataset, VCTK-RVA, which encodes relative attribute differences between speakers
to support text-guided voice attribute editing. This dataset provides a controllable and reproducible
benchmark for timbre modeling. Building on this foundation, the newly proposed task of vTAD, as
detailed in [12] and [4], focuses on pairwise comparisons of timbre attribute strengths based on the
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VCTK-RVA dataset. Details regarding the dataset and task setup are introduced in Section 4.1.1 and
Section 3.1.1, respectively.

In this paper, we propose a novel differential attention-based pairwise comparison framework for
more precise speaker timbre modeling. First, based on extensive analysis of the VCTK-RVA dataset,
we design an automated graph-based data augmentation method to address imbalanced timbre at-
tribute label distribution. Second, we leverage a pretrained speech codec model for speaker embedding
extraction and introduce the RTSA2(Relative Timbre Shift-Aware Differential Attention) module—a
differential denoising mechanism—to learn attribute-specific contrasts between utterances from differ-
ent speakers. Finally, we train the model on VCTK-RVA to predict which utterance exhibits stronger
presence of a given timbre attribute, with comparative experiments and ablation studies demonstrating
improved accuracy and generalization to out-of-set scenarios.

Our main contributions are:

– We propose an automated graph-based data augmentation method, which constructs a Directed
Acyclic Graph (DAG) via Disjoint-Set Union over VCTK-RVA to mitigate timbre attribute label
imbalance.

– We propose RTSA2 structure, which models timbre embedding differences and incorporates a
contrastive predictor to improve attribute strength classification accuracy both within and outside
the dataset.

– Experimental validation that our QvTAD method enhances prediction accuracy across multiple
timbre descriptors, with notable gains in unseen-speaker settings.

2 Related Work

2.1 Cross-Domain Relative Attribute Modeling

The task of "given two samples and an attribute, determine which sample is stronger in that attribute"
is prevalent across various domains and is widely known as relative attribute learning. This formulation
avoids the subjectivity and inconsistency of scalar annotations by instead supervising models through
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comparisons between pairs of samples. It has been applied successfully in Computer Vision, Natural
Language Processing, and medical imaging, etc.

In Computer Vision, Parikh [9] first introduced the concept of relative attributes using image pairs
to define attribute strength relationships, and trained a ranking SVM accordingly. Souri proposed
Deep Relative Attributes [18], leveraging CNNs for feature extraction and optimizing a ranking loss
in an end-to-end framework. Zhang [20] introduced DACRL, incorporating attribute centers in the
embedding space to improve ranking interpretability. Relative modeling of style or emotion intensity
has gained traction in Natural Language Processing. Jhamtani [6] trained a style transfer model using
pairs of Shakespearean and modern sentences to model stylistic strength.

These methods share a unified formulation: sample pair + attribute + strength comparison, em-
phasizing perceptual-space modeling through relational supervision. Our task of predicting timbre
strength in speech extends this paradigm to the auditory domain.

2.2 Relative Perception and Timbre Attribute Detection

While relative attribute learning is mature in Computer Vision and NLP, it remains underexplored
in speech. Wester’s MOSPC framework trains ranking models from subjective speech naturalness
comparisons, outperforming traditional MOS in consistency and reliability [14]. NR-SQA introduced
pairwise and triplet ranking losses for no-reference speech quality assessment, directly modeling ordinal
perceptual differences to improve generalization to synthetic and real speech [13].

Despite these advances, speech attribute modeling faces two central challenges: (1) Abstraction:
Timbre perception involves nonlinear interactions of frequency structure, harmonic content, and energy
distribution, making it difficult to judge from Mel spectrograms. (2) Subjectivity: Timbre annotation
requires expert knowledge and lacks consistency, limiting scalability.

Recent studies by VoxEditor [10] introduced VCTK-RVA—the first timbre relative modeling dataset-
featuring pairwise comparisons of 34 attributes (e.g., magnetic, bright, hoarse) annotated by human
raters. Its attribute composition (Figure 1a) makes it one of the few public resources for speech-based
relative attribute learning.

However, timbre’s inherent abstraction and subjectivity lead to listener discrepancies. Conven-
tional signal-based analyses often mismodel timbre: for instance, "soft" voices (typically with smooth
mid/low-frequency energy) may contradict low-level features. As shown in Figure 1b–c, Speaker B was
rated "softer" by speech AI experts despite conflicting acoustic features (higher high-frequency ratio,
shimmer)—highlighting limitations of low-level descriptors.

Prior work on pathological voice assessment, which models extensive acoustic parameters [2], suffers
from complexity, inefficiency, and sensitivity to dataset bias, lacking robustness at scale.

3 Method

This paper focuses on the task of modeling the relative strength of timbre-related attributes in speech,
aiming to determine which of two given speech samples exhibits a stronger presence of a target timbre
attribute. To this end, we propose QvTAD, a novel model that integrates a differential attention
mechanism with a perceptual difference amplification strategy for relative attribute prediction. Our
approach follows the paradigm of “sample pair + attribute word + relative strength judgment” and is
composed of a pairwise comparision oriented data augmentation method with Disjoint-Set Searching
and a main prediction model with two core components: (1) a Differential Attention Prior-Guided
Relative Attribute Amplification Mechanism, which enhances the perception of fine-grained attribute
differences between sample pairs, and (2) a multi-label classifier conditioned on the target attribute.
As illustrated in 2, the overall architecture comprises three main modules: a frozen FACodec Encoder
for timbre representation extraction, a differential attention module for contrastive modeling, and a
final probabilistic prediction network with sigmoid activation.

3.1 Data Augmentation with Disjoint-Set Searching

We analyzed an existing speech attribute comparison dataset (see Section 4.1 for VCTK details),
which includes multiple attribute dimensions (e.g., brightness, roughness) defined by speaker pairwise
comparisons.
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Fig. 2: Overview of the proposed QvTAD framework.

Statistical analysis reveals a pronounced long-tail distribution: head attributes (e.g., Brightness_F,
Rough_F ) account for over 45% of samples, while tail attributes (e.g., Transparent_F, Gentle_F ) are
severely underrepresented (some <1%). This imbalance may bias training, hindering learning of rare
attributes.

Notably, we observed a key structural property: for any speaker pair and attribute, all comparisons
share the same label direction (no contradictions). This suggests the dataset is built on speaker-
level rather than clip-level rankings, providing valuable priors for downstream tasks like graph-based
modeling.

To address the issue of imbalanced data distribution across timbre attributes and insufficient cov-
erage of training pairs, we propose a Disjoint-Set Union (DSU)-based data augmentation strategy
tailored for pairwise comparison tasks. Inspired by structured modeling, our method abstracts each
speaker and their associated timbre attribute strength as nodes and edges within a directed graph,
enabling the construction of an attribute-aware graph structure that systematically discovers potential,
yet unobserved, comparable pairs to enrich the training data.

Specifically, each annotated pair in the training set is represented as a directed edge between two
nodes of the form 〈Speaker, Attribute〉. For example, if utterance OB is annotated as stronger than
OA with respect to attribute vi, we add a directed edge from node (A, vi) to (B, vi), indicating the
relative strength relation. All annotated pairs form a directed graph under each attribute dimension.
Under the assumption of transitivity in attribute comparison, this graph is expected to form a locally
ordered DAG.

Building on this structure, we introduce an attribute-specific DSU-based augmentation strategy. For
each attribute vi ∈ V, we maintain an independent disjoint-set structure to track transitive connectivity
among nodes under that attribute. We then iterate over all unannotated node pairs (u, v) and query
their connectivity in the DSU: if a transitive path exists between u and v but the pair is not present
in the original training set, the pair is treated as a pseudo-labeled candidate pair. To mitigate the risk
of noisy or inconsistent annotations inherent to graph construction, we apply a minimum path length
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threshold and a multi-path voting mechanism to ensure the reliability and quality of the augmented
pairs.

3.2 Relative Timbre Shift-Aware Differential Attention

Input Modeling and Task Formulation We consider as input a pair of speech embeddings, denoted
as eA, eB ∈ Rd, where d = 256 is the embedding dimensionality. The timbre attribute of interest is
specified by an attribute index vector l ∈ {0, 1}K , where K = 34 denotes the number of predefined
timbre attributes. The objective is to predict whether eB exhibits a stronger presence of the specified
attribute compared to eA. The model outputs a scalar probability p ∈ [0, 1], representing the confidence
that "sample B is stronger than sample A" for the given attribute.

Following NaturalSpeech3 [7], we employ a pretrained FACodec Encoder to extract 1024-dimensional
speech embeddings for each audio sample. The encoder is frozen during training to maintain stable
representations.

Differential Attention Prior-Guided Relative Attribute Amplification Given the nature of
relative attribute modeling—centered around contrastive perception—we introduce a differential at-
tention mechanism to enhance representation differences between samples. This module employs multi-
head differential denoising attention [19] to suppress shared noise in the attention maps between the
query-key pairs, thereby strengthening discriminative contrast features.

We begin by concatenating the two input embeddings into a sequence:

E = [eA; eB ] ∈ R2×d (1)

This sequence is fed into the multi-head differential attention module to generate enhanced con-
trastive representations: eatt

A , eatt
B ∈ Rd. Inspired by differential amplifiers, the module computes at-

tention differences between two sets of query-key pairs to suppress common-mode signals and amplify
significant contrastive cues. Specifically, each attention head computes:

[Q1; Q2] = EWQ, [K1; K2] = EWK (2)

The attention difference is then computed as:

Adiff = softmax
(
Q1K

⊤
1√

d

)
− λ · softmax

(
Q2K

⊤
2√

d

)
(3)

where λ ∈ (0, 1) is a learnable scaling factor (initialized as λinit) to balance the contribution of the
two attention maps. The resulting attention map Adiff is applied to the value vectors V , yielding the
attention-enhanced contrastive representations eatt

A , eatt
B .

Since relative attribute modeling always operates on a pair of samples, the input sequence length
remains fixed at 2. As such, our model focuses on pairwise contrast rather than long-range contextual
dependency, and thus positional encoding is unnecessary. Furthermore, we empirically observed that
Rotary Positional Embeddings (RoPE) did not improve performance in this setting and introduced
unnecessary computation. We therefore exclude RoPE from the attention head to simplify the model
and improve training efficiency.

To further enhance the model’s sensitivity to subtle timbre differences, we compute a difference
vector, which is non-linearly modulated and normalized to generate an amplified contrastive represen-
tation:

∆ = eatt
B − eatt

A ; ∆̂ = tanh(∆) · ∥∆∥2 · γ (4)

where γ ∈ [0, 2] is a learnable amplification factor that scales the perceptual contrast based on the
difficulty of the sample pair. We empirically found this bounded range leads to stable training and
better performance. The amplification factor γ is generated by a contrastive prediction module:

γ = σ
(
fscale([e

att
A ; eatt

B ])
)

(5)

where fscale(·) is a two-layer feedforward network with non-linear activations, and σ(·) denotes
the sigmoid function. The output is rescaled to the range [0, 2] to control the intensity of contrast
amplification.
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Finally, we concatenate three sources of information—eatt
A , eatt

B , and ∆̂—and feed them into a feed-
forward prediction network composed of two fully connected layers, batch normalization, and dropout
for regularization. The output is a probability vector:

o = σ(Woutz) ∈ RK (6)

where the k-th element ok represents the predicted probability that sample B is stronger than
sample A with respect to attribute k. During training, we apply supervision only on the target attribute
dimension where lk = 1, using a binary cross-entropy (BCE) loss.

4 Experiments and Evaluation

4.1 Dataset

For the vTAD task, we utilize the VCTK-RVA dataset, which is derived from the publicly available
CSTR VCTK Corpus [15] through additional annotation. The original VCTK corpus consists of speech
recordings from 110 English speakers with diverse accents. Each speaker reads approximately 400
sentences, selected from a newspaper article, the Rainbow Passage, and an elicitation paragraph used
in the Speech Accent Archive.

VCTK-RVA provides relative strength annotations for voice attributes between speech segments
from different speakers of the same gender. The training set involves 101 speakers. For each ordered
pair of speakers, 1 to 3 timbre descriptors are annotated, resulting in a total of 6,038 labeled pairs
in the form of Speaker A, Speaker B, voice attribute v, indicating that Speaker B exhibits a stronger
presence of attribute v compared to Speaker A.

After data augmentation, the training set contains 166,409 samples. For validation and testing, we
use the original splits provided with the dataset. The validation set consists of 1,085 samples. The
test set is divided into two subsets: seen (94,000 samples) and unseen (91,600 samples), representing
speakers included and excluded from the training set, respectively. All audio samples are downsampled
to 16 kHz.

4.2 Training Setup

For fair evaluation on unseen speakers, we adopt the pretrained codec model in NaturalSpeech3,
FACodec as the timbre encoder which produces 256-dimensional representations. FaCodec is trained
on the Librilight corpus, which ensures no speaker overlap with the VCTK test set.

Model training is performed on 8 NVIDIA A800 GPUs via the Accelerate framework [3], with a
batch size of 8,192 samples per GPU. The model is trained for 20 epochs until convergence. We employ
the Adam optimizer with hyperparameters β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−8, with a learning
rate of 5× 10−5.

For baseline evaluation, we follow the official configuration provided by the vTAD Challenge, using
both the dataset and training/inference protocols as described in the challenge paper and official
codebase 1.

4.3 Evaluation and Ablation Analysis

In this section, the QvTAD model is compared with the reproduced results of the official FAcodec
baseline model of the vTAD 2025 challenge [12], with the original data from the paper listed above.
Following the evaluation framework proposed in [10] [12], accuracy (ACC) and equal error rate (EER)
are adopted as the evaluation metrics, and a systematic comparison is conducted on the performance
of different models across two gender categories (Male, Female) and two scenarios (Seen, Unseen).
Among them, QvTAD-AST corresponds to the model data of the competition scheme, which is included
solely to ensure the fairness of the comparison; QvTAD-RTSA² represents the proposed model in this
paper. The experimental results demonstrate that in the Seen scenario, QvTAD-RTSA² achieves the
second-highest accuracy for both genders, with its performance surpassed only by QvTAD-AST and
FACodec (Reproduced). In the Unseen scenario, the proposed model attains best performance across
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Table 1: Performance comparison across different speaker groups on VCTK-RVA testset.

Method
Seen (M/F) Unseen (M/F)

ACC (%) ↑ EER (%) ↓ Avg ACC ACC (%) ↑ EER (%) ↓ Avg ACC

ECAPA-TDNN (Reported) 94.23/93.42 5.43/6.45 93.83 71.01/70.18 27.10/30.28 70.60
FACodec (Reported) 92.67/93.37 6.85/6.58 93.02 91.67/89.77 8.72/10.38 90.72

FACodec (Reproduced) 87.49/84.57 12.17/14.92 86.03 81.55/70.42 18.04/29.66 75.99
QvTAD-AST 84.95/88.79 15.55/12.03 86.87 74.00/76.44 26.59/25.30 75.22
QvTAD-RTSA2 86.45/85.32 13.82/14.93 85.89 91.90/82.07 7.89/18.52 86.99

all evaluation metrics, fully validating the superior capability of the proposed method in learning
speaker-irrelevant differences.

To evaluate the effectiveness of each proposed component in our model, we conduct ablation exper-
iments by progressively removing key modules and comparing performance on both seen and unseen
speaker groups. Table 2 summarizes the results.

We first evaluate the impact of our DSU Searching-based data augmentation. Removing it leads
to significant performance degradation, particularly for seen speakers (-2.12% ACC) and to a lesser
extent for unseen speakers (-1.44% ACC). This confirms that augmentation enhances the model’s
robustness to intra- and inter-speaker variations, promoting better generalization. Next, we assess
our RTSA² module, designed to accentuate perceptual differences between embedding pairs while
suppressing shared timbral features. Removing this module causes a slight drop in accuracy for unseen
speakers (-0.71%) despite a marginal gain for seen speakers (+0.10%), suggesting RTSA² is critical
for generalizing to unseen speaker distributions. This is likely attributed to its contrastive learning
mechanism, which emphasizes relative timbre shifts over absolute representations.

Overall, the full QvTAD-RTSA2 model achieves the best performance across both seen and unseen
conditions, validating the effectiveness of both components. The results highlight the importance of
contrast-aware attention and data diversity in relative timbre attribute modeling.

Table 2: Ablation study of module effectiveness between seen and unseen speaker groups.

Method Seen ACC (%) Unseen ACC (%)

QvTAD-RTSA2 85.89 86.99
w/o Data Augmentation 83.77 85.55
w/o RTSA2 Module 85.99 86.28

5 Conclusion

We introduce QvTAD, a novel differential attention-based framework for modeling voice timbre at-
tributes through pairwise comparisons. By integrating a graph-based data augmentation method and
a shift-aware differential attention mechanism, QvTAD effectively addresses the challenges of label
imbalance and perceptual subjectivity in timbre modeling. Experiments on the VCTK-RVA dataset
demonstrate that QvTAD achieves superior performance across a range of timbre descriptors, espe-
cially in cross-speaker evaluation. These results highlight the potential of comparative comparison of
voice timbre attributes and fine-grained acoustic modeling for advancing perceptual attribute under-
standing in speech generation. Future work may extend this framework to multi-lingual timbre analysis
or real-time controllable synthesis.
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